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We present a search for electroweak single top quark production using 3.2 fb−1 of CDF II data
collected between February 2002 and September 2008 at the Tevatron in proton-antiproton collisions
at a center-of-mass energy of 1.96 TeV. The analysis employes a multivariate technique based on
Boosted Decision Trees, where the output is used to build a discriminant variable which we will fit
to the data using a binned likelihood approach. We search for a combined single top s- and t-channel
signal and measure a cross section of 2.1+0.7

−0.6 pb assuming a top quark mass of 175 GeV/c2. The
probability that the observed excess originated from a background fluctuation (p-value) is 0.00022
(3.5σ) and the expected (median) p-value in pseudo-experiments is 8.7 × 10−8 which corresponds
to a 5.2σ signal significance assuming single top quark production at the rate predicted by the
Standard Model.
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INTRODUCTION

In proton anti-proton collisions at the Tevatron with a center-of-mass energy of 1.96 TeV, top quarks are predom-
inantly produced in pairs via the strong force. In addition, the Standard Model predicts single top quarks to be
produced through an electroweak t- and s-channel exchange of a virtual W boson as shown in Figure 1. The produc-
tion cross sections have been calculated at Next-to-Leading-Order (NLO). For a top quark mass of 175 GeV/c2 the
results are 1.98±0.25 pb and 0.884±0.11 pb for the t-channel and s-channel process respectively [1]. The combined
cross section is about 40% of the top anti-top pair production cross section (σsingletop ∼ 2.9 pb). The measure-
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FIG. 1: Leading order Feynman diagrams for s-channel (left) and t-channel (right) single top quark production.

ment of electroweak single top production probes the W − t − b vertex, provides a direct determination of the
Cabbibo-Kobayashi-Maskawa (CKM) matrix element |Vtb| and offers a source of almost 100% polarized top quarks
[2]. Moreover, the search for single top also probes exotic models beyond the Standard Model. New physics, like
flavor-changing neutral currents or heavy W ′ bosons, could alter the observed production rate [3]. Finally, single top
processes result in the same final state as the Standard Model Higgs boson process WH → Wbb̄, which is one of the
most promising low mass Higgs search channels at the Tevatron [4]. Essentially, all analysis tools developed for the
single top search can be used for this Higgs search.

Finding single top quark production is challenging since it is rarely produced in comparison with other processes
with the same final state like W+jets and tt̄. The signal to background ratio of the analysis is small, typically on
the order of less than S/B∼1/15. This calls for a better discrimination of signal and background events which can
be achieved by using more information to characterize each event. We have employed a new analysis approach at
CDF that attempts to make optimal use of information in the data by means of a multivariate technique via Boosted
Decision Trees (BDT).

DATA SAMPLE & EVENT SELECTION

Our single top event selection exploits the kinematic features of the signal final state, which contains a real W boson,
one or two bottom quarks, and possibly additional jets. To reduce multi-jet backgrounds, the W originating from
the top quark decay is required to have decayed leptonically. We demand therefore a high-energy electron or muon
(ET (e) > 20 GeV, or PT (µ) > 20 GeV/c) and large missing transverse energy (MET) from the undetected neutrino
MET>25 GeV. Electrons are measured in the central and in the forward calorimeter, |η| < 1.6. Exactly two or three
jets with ET > 20 GeV and |η| < 2.8 are required to be present in the event. A large fraction of the backgrounds is
removed by demanding at least one of these two jets to be tagged as a b-quark jet by using displaced secondary vertex
information from the silicon vertex detector. The secondary vertex tagging algorithm identifies tracks associated with
the jet originating from a vertex displaced from the primary vertex indicative of decay particles from relatively long
lived B mesons. The backgrounds surviving these selections are tt̄, W + heavy-flavor jets, i.e. W + bb̄, W + cc̄, W + c

and diboson events WW , WZ, and ZZ. Instrumental backgrounds originate from mis-tagged W + jets events (W
events with light-flavor jets, i.e. with u, d, s-quark and gluon content, misidentified as heavy-flavor jets) and from
non-W + jets events (multi-jet events where one jet is erroneously identified as a lepton).

BACKGROUND ESTIMATE

Estimating the background contribution after applying the event selection to the single top candidate sample is an
elaborate process. NLO cross section calculations exist for diboson and tt̄ production, thereby making the estimation
of their contribution a relatively straightforward process. The main background contributions are from W +bb̄, W +cc̄

and W +c + jets, as well as mis-tagged W + light quark jets. We determine the W + jets normalization from the data
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and estimate the fraction of the candidate events with heavy-flavor jets using ALPGEN Monte Carlo samples [5]. The
heavy-flavor fractions were calibrated in the b-tagged W + 1 jet sample using data distributions which are sensitive
to distinguish light-flavor from heavy-flavor jets, e.g. the mass of the secondary-vertex and, more sophisticated, the
output of the Neural Network jet-flavor separator. Based on these studies, the heavy flavor content was corrected by a
factor KHF = 1.4±0.4. The probability that a W + light-flavor jet is mis-tagged is parameterized using large statistics
generic multi-jet data. The instrumental background contribution from non-W events is estimated using side-band
data with low missing transverse energy, devoid of any signal, and we subsequently extrapolate the contribution into
the signal region with large missing transverse energy, MET>25 GeV. The expected signal and background yield in
the W + 2 jet and W + 3 jet sample is shown in Table I and graphically as a function of W + jet multiplicity next
to the table. These yields contain an additional acceptance, with respect to previous single top analyses at CDF, by
including an extra muon coverege from events triggered via a MET + 2 jets trigger, which are complementary to the
inclusive high pT -lepton triggers used in previous single top CDF analyses. The new muon coverage, shown in Fig. 2,
increases the muon signal acceptance by about 30% while keeping a smaller increase in background acceptance since
the jet requirments at trigger level are more efficient accepting signal-like events.

Process Number of Events in 3.2 fb−1

W + 2 jets W + 3 jets
s-channel 58.1 ± 8.4 19.2 ± 2.8
t-channel 87.6 ± 13.0 26.2 ± 3.9
Wbb̄ 656.9 ± 198.0 201.3 ± 60.8
Wcc̄ 292.2 ± 90.1 98.1 ± 30.2
Wcj 250.4 ± 77.2 52.1 ± 16.0
Mistags 501.3 ± 69.6 151.9 ± 21.4
non-W 89.6 ± 35.8 35.1 ± 14.0
WW 58.5 ± 6.6 21.2 ± 2.4
WZ 28.9 ± 2.4 8.5 ± 0.7
ZZ 0.9 ± 0.1 0.4 ± 0.0
Z + jets 36.5 ± 5.6 15.6 ± 2.4
tt̄ dilepton 69.2 ± 10.0 60.2 ± 8.7
tt̄ non-dilepton 134.9 ± 19.6 421.8 ± 61.1
Total signal 145.7 ± 21.4 45.4 ± 6.7
Total prediction 2265.0 ± 375.4 1111.5 ± 129.5

Observed in data 2229 1086
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TABLE I: Number of expected single top and background events in 3.2 fb−1 of CDF II data passing all event selection cuts
(left). Graphical representation of the predicted and observed W+jets yield (right).

ANALYSIS METHOD

In order to search for a single top quark production we developed a multivariate technique based on Boosted
Decision Trees. To Build the BDTs we make use of the ROOT-integrated package TMVA [7].

A decision tree is a binary tree structured classifier like the one sketched in Fig. 3. Repeated left/right (yes/no)
decisions are performed on a single variable at a time until some stop criterion is reached. Like this the phase space
is split into regions that are eventually classified as signal or background, depending on which makes up the majority
of training events that end up in the final leaf nodes. The boosting of a decision tree (BDT) represents an extension
to a single decision tree. Several decision trees (a forest), derived from the same training sample by reweighting
events, are combined to form a classifier which is given by a (weighted) majority vote of the individual decision trees.
This process, called boosting, stabilizes the response of the decision trees with respect to fluctuations in the training
sample.

Using boosted decision trees many kinematic or event shape input variables are combined into a single output
variable with powerful discriminantion between signal and background. In the search for single top quark production,
four different boosted decision trees are trained in different jet and b-tag bins:

• 2 jets, 1 b-tag

• 2 jets, 2 b-tags
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FIG. 2: This plot shows the increased acceptance of muon + jets events triggered through MET + 2jets trigger in addition to
muon + jets events triggered through the default inclusive high pT -muon trigger.

FIG. 3: Schematic view of a decision tree. Starting from the root node, a sequence of binary splits using the discriminating
variables xi is performed. Each split uses the variable that at this node gives the best separation between signal and background
when being cut on. The same variable may thus be used at several nodes, while others might not be used at all. The leaf nodes
at the bottom end of the tree are labeled S for signal and B for background depending on the majority of events that end up
in the respective nodes.

• 3 jets, 1 b-tag

• 3 jets, ≥ 2 b-tags

The level of agreement between data and Monte Carlo Simulation is checked for all the input variables in the four
signal regions as well as in different control regions. In addition to the validation of the input variables, the output
of the four trained BDTs are found to be in good agreement with data in three different control regions: 2 and 3 jets
with no b-tags (W + light flavor dominant) and 4 jets with at least 1 b-tag (tt̄ dominant).
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We construct template histograms for signal and background. The templates for all signal and background processes
for the BDT optimized in the four signal regions are shown in Fig. 4.
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FIG. 4: Templates of the BDT outputs. The top two plots show the two-jet bin while the bottom plots show the three-jet bin.
Single-tag discriminants are on the left side, while double-tag discriminants are on the right side. All histograms are normalized
to unit area.

We perform a binned maximum likelihood fit to the data, in which the background templates are Gaussian con-
strained (within their respective uncertainties) to the predicted background yield while the signal template is free
floating in the fit. The likelihood fit result determines the most probable value of the single-top cross section. Sources
of systematic uncertainty are accounted for in the definition of the likelihood function shown in Equation 1.

SYSTEMATIC UNCERTAINTIES

We address systematic uncertainty from several different sources: (1) jet energy scale (2), initial state radiation
(3), final state radiation , (4) parton distribution functions, (5) the event generator, (6) the uncertainty in the event
detection efficiency, (7) the uncertainty on the integrated luminosity, (8) neural network b-tagger uncertainty, (9)
ALPGEN Monte Carlo factorization/renormalization scale uncertainty, (10) uncertainty on the mistag model, (11)
uncertainty on the non-W model, and (12) uncertainty on the Monte Carlo modeling. Systematic uncertainties can
influence both, the expected event yield (normalization) and the shape of the discriminant distribution.

Normalization uncertainties are estimated by calculating the variation in the expected event yield due to a systematic
effect. The range of systematic rate and shape variations across signal and background processes are shown in Table
II. Shape uncertainties are estimated by producing shifted template histograms for each process due to the systematic
effect. The bin-by-bin relative variations are used as shape systematics in the likelihood function. The letter ’X’ in
Table II indicates that a shape systematic has been evaluated for the particular nuisance parameter and included in
the likelihood function.
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Systematic Uncertainty Rate Uncertainty Shape Uncertainty
Jet energy scale 0...16% 4
Initial state radiation 0...11% 4
Final state radiation 0...15% 4
Parton distribution functions 2...3% 4
Monte Carlo generator 1...5% —
Event detection efficiency 0...9% —
Luminosity 6% —
Neural Network Jet-Flavor Separator — 4
Fact. Ren. Scale in Alpgen MC — 4
Mistag model — 4
non-W — 4
MC mis-modeling — 4
W+bottom normalization 30% —
W+charm normalization 30% —
Mistag normalization 17...29% —
tt̄ normalization 23% —

TABLE II: Minimum to maximum range of observed systematic normalization variations estiamted across all different processes
and analysis input channels. The 4 indicates that a template shape uncertainty has been evaluated for that particular nuisance
parameter and has been included in the likelihood function.

For all backgrounds the normalization uncertainties are represented by the uncertainty on the predicted number of
background events and are incorporated in the analysis as Gaussian constraints G(βj |1, ∆j) in the likelihood function:

L(β1, ... , β5; δ1, ... , δ10) =

B∏

k=1

e−µk · µnk

k

nk!
︸ ︷︷ ︸

Poisson term

·

5∏

j=2

G(βj |1, ∆j)

︸ ︷︷ ︸

Gauss constraints

·

12∏

i=1

G(δi, 0, 1)

︸ ︷︷ ︸

Systematics

(1)

where, µk =
5∑

j=1

βj ·

{
12∏

i=1

[1 + |δi| · (εji+H(δi) + εji−H(−δi))]

}

︸ ︷︷ ︸

Normalization Uncertainty

(2)

· αjk
︸ ︷︷ ︸

Shape P.

·

{
12∏

i=1

(1 + |δi| · (κjik+H(δi) + κjik−H(−δi)))

}

︸ ︷︷ ︸

Shape Uncertainty

(3)

The systematic normalization and shape uncertainties are incorporated into the likelihood as nuisance parameters,
conforming with a fully Bayesian treatment [6]. We take the correlation between normalization and shape uncertainties
for a given source into account [8]. The relative strength of a systematic effect due to the source i is parameterized
by the nuisance parameter δi in the likelihood function, constrained to a unit-width Gaussian (last term in Equation
1). The ±1σ changes in the normalization of process j due to the ith source of systematic uncertainty are denoted
by εji+ and εji− (see Equation part 2). The ±1σ changes in bin k of the EPD templates for process j due to the
ith source of systematic uncertainty are quantified by κjik+ and κjik− (see Equation part 3). H(δi) represents the
Heaviside function, defined as H(δi) = 1 for δi > 0 and H(δi) = 0 for δi < 0. The Heaviside function is used to
separate positive and negative systematic shifts (for which we have different normalization and shape uncertainties).
The variable δi appears in both the term for the normalization (Equation 2) and the shape uncertainty (Equation
3), which is how correlations between both effects are taken into account. We reduce the likelihood function to the
parameter of interest (the single top cross-section) by the standard Bayesian marginalizing procedure [9].

RESULTS

We apply the analysis to 3.2 fb−1of CDF Run II Data. In order to extract the most probable single top content
in the data we perform a maximum likelihood fit of the event probability discriminant distributions. The posterior



7

p.d.f is obtained by using Bayes’ theorem:

p(β1|data) =
L∗(data|β1)π(β1)

∫
L∗(data|β′

1)π(β′
1)dβ′

1

where L∗(data|β1) is the marginalized likelihood and π(β1) is the prior p.d.f. for β1. We adopt a flat prior, π(β1) =
H(β1), in this analysis, with H being the Heaviside step function.

The most probable value corresponds to the most likely single top production cross section given the data. The
uncertainty corresponds to the range of highest posterior probability density which covers 68.27%. Performing the
likelihood fit with all systematic rate and shape uncertainties included in the likelihood function, we measure a single
top cross section of 2.1+0.7

−0.6 pb. The posterior probability density is shown on the left of Fig. 5. In the Fig. 6 the BDT
output distribution for signal and background, normalized to the Standard Model prediction, are shown in the four
signal regions and compared to the distributions in data.
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FIG. 5: Left: cross section result using 3.2 fb−1of CDF II data. The error band shows the 68% uncertainty (all systematics
included) on the measurement. Right: Distribution of the likelihood ratio test statistic for the signal + background (s+b) and
background only hypothesis. The arrow indicates the result observed in data and the red dashed line indicates the expected
median result.

We have calculated the signal significance of this result using a standard likelihood ratio technique [10]. In this
approach, pseudo-experiments are generated from background only events. We define the likelihood ratio test statistic

Q = −2 ln P (data)|(s+b)
P (data)|(b) and calculate the p-value, i.e. the probability of the background only hypothesis (b) to fluctuate

to the observed result in data or higher. We estimate the expected p-value, by taking the median of the test hypothesis
(s+b) distribution as the ’observed’ value (dashed red line in right plot of Fig. 5). We expect a p-value of 8.7× 10−8

(5.2 σ) and observe a p-value of 0.00022 (3.5 σ) in the data. All sources of systematic uncertainty are included in
our statistical treatment and we consider correlation between normalization and discriminant shape changes due to
sources of systematic uncertainty (e.g. the jet-energy-scale uncertainty) as described in the previous section.

SINGLE TOP SIGNAL FEATURES

In Fig.7 we enrich our candidate sample with single top events by making increasing cuts on our BDT output
and look for single top signal features for a few sensitive variables like Qlepton · ηuntagged jet which shows a distinct
asymmetry for t-channel single top events and the invariant mass of the W − b system, a quantity which should be
close to the top quark mass. Although the uncertainties are large, there is a good shape agreement between data and
the Monte Carlo prediction including single top (all plots normalized to the observed data).
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FIG. 6: CDF data compared to Monte Carlo prediction for signal and background. The top plots show the two-jet bin while
the bottom plot shows the three-jet bin; the left-hand plots show the single-tagged events while the right-hand plots show the
double-tagged events.

CONCLUSIONS

We report a measurement of electroweak single top quark production at CDF II using 3.2 fb−1of proton-antiproton
collisions recorded at the Tevatron. We employ a new multivariate technique at CDF based on Boosted Decision Trees
for this search and measure a combined s-channel and t-channel single top cross-section of σsingletop = 2.1+0.7

−0.6 pb
assuming a top quark mass of 175 GeV/c2. We use a standard likelihood ratio technique to calculate the signal
significance. The observed p-value is 0.00022 (3.5 σ) and the expected (median) p-value in pseudo-experiments is
8.7 × 10−8 (5.2 σ).
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FIG. 7: Data and Monte Carlo comparison of the Qlepton · ηuntagged jet and mWb distributions for increasing cuts on the BDT
output. The top row includes events with BDT output values (BDT>0.25) and the bottom row includes events with BDT
output values (BDT>0.6).
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